The Altered States Database: Psychometric data from a systematic literature review

  • Schmidt, T. T. & Berkemeyer, H. The Altered States Database: Psychometric Data of Altered States of Consciousness. Frontiers in Psychology 9, https://doi.org/10.3389/fpsyg.2018.01028 (2018).

  • Dittrich, A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 31(Suppl 2), 80–84, https://doi.org/10.1055/s-2007-979351 (1998).

    Article 

    Google Scholar
     

  • Studerus, E., Gamma, A. & Vollenweider, F. X. Psychometric Evaluation of the Altered States of Consciousness Rating Scale (OAV). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012412 (2010).

  • Tagliazucchi, E. et al. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Current Biology 26, 1043–1050, https://doi.org/10.1016/j.cub.2016.02.010 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wittmann, M., Giersch, A. & Berkovich‐Ohana, A. Altered states of consciousness: With special reference to time and the self. PsyCh Journal 8, https://doi.org/10.1002/pchj.284 (2019).

  • Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences 109, 2138–2143, https://doi.org/10.1073/pnas.1119598109 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Muthukumaraswamy, S. D. et al. Broadband cortical desynchronization underlies the human psychedelic state. The Journal of neuroscience: the official journal of the Society for Neuroscience 33, 15171–15183, https://doi.org/10.1523/JNEUROSCI.2063-13.2013 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schmid, Y. et al. Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects. Biological psychiatry 78, 544–553, https://doi.org/10.1016/j.biopsych.2014.11.015 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Corlett, P. R., Frith, C. D. & Fletcher, P. C. From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology 206, 515–530, https://doi.org/10.1007/s00213-009-1561-0 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Majić, T., Schmidt, T. T. & Gallinat, J. Peak experiences and the afterglow phenomenon: When and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol 29, 241–253, https://doi.org/10.1177/026988111456804011 (2015).

    Article 

    Google Scholar
     

  • Nayak, S. & Johnson, M. W. Psychedelics and Psychotherapy. Pharmacopsychiatry 54, https://doi.org/10.1055/a-1312-7297 (2021).

  • Reiff, C. M. et al. Psychedelics and Psychedelic-Assisted Psychotherapy. American Journal of Psychiatry 177, https://doi.org/10.1176/appi.ajp.2019.19010035 (2020).

  • Schmidt, T. T. & Majić, T. Empirische Untersuchung veränderter Bewusstseinszustände. in Handbuch Psychoaktive Substanzen, https://doi.org/10.1007/978-3-642-55214-4_65-1 (Springer Berlin Heidelberg, 2016).

  • Pekala, R. J. & Cardeña, E. Methodological issues in the study of altered states of consciousness and anomalous experiences. American Psychological Associationarieties, https://doi.org/10.1037/10371-002 (2000).

  • de Deus Pontual, A. A., Senhorini, H. G., Corradi-Webster, C. M., Tófoli, L. F. & Daldegan-Bueno, D. Systematic Review of Psychometric Instruments Used in Research with Psychedelics. J. Psychoactive Drugs 1–10, https://doi.org/10.1080/02791072.2022.2079108 (2022).

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, https://doi.org/10.1136/bmj.n71 (2021).

  • Schmidt, TT. & Prugger, J. The Altered States Database (ASDB), OSF, https://doi.org/10.17605/OSF.IO/8MBRU (2022).

  • Hirschfeld, T. & Schmidt, T. T. Dose–response relationships of psilocybin-induced subjective experiences in humans. J Psychopharmacol 35, 384–397, https://doi.org/10.1177/0269881121992676 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dittrich, A. Zusammenstellung eines Fragebogens (APZ) zur Erfassung abnormer psychischer Zustände [Construction of a questionnaire (APZ) for assessing abnormal mental states]. Z Klin Psychol Psychiatr Psychother 12–20.

  • Dittrich, A. Ätiologie-unabhängige Strukturen veränderter Wachbewußtseinszustände: Ergebnisse empirischer Untersuchungen über Halluzinogene I. und II. Ordnung, sensorische Deprivation, hypnagoge Zustände, hypnotische Verfahren sowie Reizüberflutung; 119 Tabellen. (Enke, 1985).

  • Bodmer, I., Dittrich, A. & Lamparter, D. Aussergewöhnliche Bewusstseinszustände-Ihre gemeinsame Struktur und Messung [Altered states of consciousness-Their common structure and assessment]. Welten des Bewusstseins. Bd 3, 45–58 (1994).


    Google Scholar
     

  • Dittrich, A., Lamparter, D. & Maurer, M. 5D-ABZ: Fragebogen zur Erfassung Aussergewöhnlicher Bewusstseinszustände. Eine kurze Einführung [5D-ASC: Questionnaire for the Assessment of Altered States of Consciousness. A Short Introduction]. Zürich: PSIN PLUS Publications (2006).

  • Pekala, R. J. Quantifying Consciousness. Springer US, https://doi.org/10.1007/978-1-4899-0629-8 (1991).

  • Pekala, R. J. & Levine, R. L. Quantifying states of consciousness via an empirical-phenomenological approach. Imagination, Cognition and Personality 2, 51–71 (1982).

    Article 

    Google Scholar
     

  • Strassman, R. J., Qualls, C. R., Uhlenhuth, E. H. & Kellner, R. Dose-response study of N,N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Archives of general psychiatry 51, 98–108, https://doi.org/10.1001/archpsyc.1994.03950020022002 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Pahnke, W. N. Drugs and mysticism: An analysis of the relationship between psychedelic drugs and the mystical consciousness. Harvard University Press (1963).

  • Pahnke, W. N. Drugs and Mysticism. International Journal of Parapsychology 295–314 (1966).

  • MacLean, K. A., Leoutsakos, J.-M. S., Johnson, M. W. & Griffiths, R. R. Factor Analysis of the Mystical Experience Questionnaire: A Study of Experiences Occasioned by the Hallucinogen Psilocybin. Journal for the scientific study of religion 51, 721–737, https://doi.org/10.1111/j.1468-5906.2012.01685.x (2012).

    Article 

    Google Scholar
     

  • Caudevilla-Gálligo, F. et al. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. Journal of Psychopharmacology (Oxford, England) 26, 1026–1035, https://doi.org/10.1177/0269881111431752 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Papaseit, E. et al. Acute Pharmacological Effects of 2C-B in Humans: An Observational Study. Frontiers in Pharmacology 9, 206, https://doi.org/10.3389/fphar.2018.00206 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kuypers, K. P. C. et al. A First-in-Man Study with 4-Fluoroamphetamine Demonstrates it Produces a Mild Psychedelic State. J Psychoactive Drugs 51, 225–235, https://doi.org/10.1080/02791072.2019.1569286 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reckweg, J. et al. A Phase 1, Dose-Ranging Study to Assess Safety and Psychoactive Effects of a Vaporized 5-Methoxy-N, N-Dimethyltryptamine Formulation (GH001) in Healthy Volunteers. Front Pharmacol 12, 760671, https://doi.org/10.3389/fphar.2021.760671 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Uthaug, M. V. et al. Prospective examination of synthetic 5-methoxy-N,N-dimethyltryptamine inhalation: effects on salivary IL-6, cortisol levels, affect, and non-judgment. Psychopharmacology (Berl) 237, 773–785, https://doi.org/10.1007/s00213-019-05414-w (2020).

  • Uthaug, M. V. et al. A single inhalation of vapor from dried toad secretion containing 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in a naturalistic setting is related to sustained enhancement of satisfaction with life, mindfulness-related capacities, and a decrement of psychopathological symptoms. Psychopharmacology 236, 2653–2666, https://doi.org/10.1007/s00213-019-05236-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barsuglia, J. et al. Intensity of Mystical Experiences Occasioned by 5-MeO-DMT and Comparison With a Prior Psilocybin Study. Frontiers in psychology 9, 2459, https://doi.org/10.3389/fpsyg.2018.02459 (2018).

    Article 

    Google Scholar
     

  • Davis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. The epidemiology of 5-methoxy- N, N-dimethyltryptamine (5-MeO-DMT) use: Benefits, consequences, patterns of use, subjective effects, and reasons for consumption. Journal of psychopharmacology (Oxford, England) 32, 779–792, https://doi.org/10.1177/0269881118769063 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Davis, A. K., So, S., Lancelotta, R., Barsuglia, J. P. & Griffiths, R. R. 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) used in a naturalistic group setting is associated with unintended improvements in depression and anxiety. The American journal of drug and alcohol abuse 45, 161–169, https://doi.org/10.1080/00952990.2018.1545024 (2019).

    Article 

    Google Scholar
     

  • Riba, J., Rodríguez-Fornells, A. & Barbanoj, M. Effects of ayahuasca on sensory and sensorimotor gating in humans as measured by P50 suppression and prepulse inhibition of the startle reflex, respectively. Psychopharmacology 165, 18–28, https://doi.org/10.1007/s00213-002-1237-5 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Valle, M. et al. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 26, 1161–1175, https://doi.org/10.1016/j.euroneuro.2016.03.012 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Alonso, J. F., Romero, S., Mañanas, M. À. & Riba, J. Serotonergic Psychedelics Temporarily Modify Information Transfer in Humans. International Journal of Neuropsychopharmacology 18, https://doi.org/10.1093/ijnp/pyv039 (2015).

  • Uthaug, M. et al. A placebo-controlled study of the effects of ayahuasca, set and setting on mental health of participants in ayahuasca group retreats. Psychopharmacology 238, 1899–1910, https://doi.org/10.1007/s00213-021-05817-8 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barbanoj, M. J. et al. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers. Psychopharmacology 196, 315–326, https://doi.org/10.1007/s00213-007-0963-0 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dos Santos, R. G. et al. Autonomic, neuroendocrine, and immunological effects of ayahuasca: a comparative study with d-amphetamine. Journal of clinical psychopharmacology 31, 717–726, https://doi.org/10.1097/JCP.0b013e31823607f6 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Palhano-Fontes, F. et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol Med 49, 655–663, https://doi.org/10.1017/S0033291718001356 (2019).

    Article 

    Google Scholar
     

  • Pasquini, L., Palhano-Fontes, F. & Araujo, D. B. Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. J Psychopharmacol 34, 623–635, https://doi.org/10.1177/0269881120909409 (2020).

    Article 

    Google Scholar
     

  • Riba, J. et al. Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology 154, 85–95, https://doi.org/10.1007/s002130000606 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Riba, J. et al. Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers: Topographic pharmaco-EEG of ayahuasca. British Journal of Clinical Pharmacology 53, 613–628, https://doi.org/10.1046/j.1365-2125.2002.01609.x (2002).

    Article 

    Google Scholar
     

  • Riba, J. et al. Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion, and Pharmacokinetics. J Pharmacol Exp Ther 306, 73–83, https://doi.org/10.1124/jpet.103.049882 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Riba, J. et al. Increased frontal and paralimbic activation following ayahuasca, the pan-amazonian inebriant. Psychopharmacology 186, 93–98, https://doi.org/10.1007/s00213-006-0358-7 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Grob, C. S. et al. Human Psychopharmacology of Hoasca, A Plant Hallucinogen Used in Ritual Context in Brazil. The Journal of Nervous and Mental Disease 184, 86–94, https://doi.org/10.1097/00005053-199602000-00004 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, R. R., Hurwitz, E. S., Davis, A. K., Johnson, M. W. & Jesse, R. Survey of subjective ‘God encounter experiences’: Comparisons among naturally occurring experiences and those occasioned by the classic psychedelics psilocybin, LSD, ayahuasca, or DMT. PloS one 14, e0214377, https://doi.org/10.1371/journal.pone.0214377 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ruffell, S. G. D. et al. Ceremonial Ayahuasca in Amazonian Retreats-Mental Health and Epigenetic Outcomes From a Six-Month Naturalistic Study. Frontiers in Psychiatry 12, 687615, https://doi.org/10.3389/fpsyt.2021.687615 (2021).

    Article 

    Google Scholar
     

  • Daumann, J. et al. Pharmacological modulation of the neural basis underlying inhibition of return (IOR) in the human 5-HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 200, 573–583, https://doi.org/10.1007/s00213-008-1237-1 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Gouzoulis-Mayfrank, E. et al. Psychological Effects of (S)-Ketamine and N,N-Dimethyltryptamine (DMT): A Double-Blind, Cross-Over Study in Healthy Volunteers. Pharmacopsychiatry 38, 301–311, https://doi.org/10.1055/s-2005-916185 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pallavicini, C. et al. Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings. Journal of psychopharmacology (Oxford, England) 35, 406–420, https://doi.org/10.1177/0269881120981384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riba, J., Rodrı́guez-Fornells, A., Strassman, R. J. & Barbanoj, M. J. Psychometric assessment of the Hallucinogen Rating Scale. Drug and Alcohol Dependence 62, 215–223, https://doi.org/10.1016/S0376-8716(00)00175-7 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Riba, J., McIlhenny, E. H., Bouso, J. C. & Barker, S. A. Metabolism and urinary disposition of N,N-dimethyltryptamine after oral and smoked administration: a comparative study. Drug testing and analysis 7, 401–406, https://doi.org/10.1002/dta.1685 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schenberg, E. E. et al. Acute Biphasic Effects of Ayahuasca. PLoS One 10, e0137202, https://doi.org/10.1371/journal.pone.0137202 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Strassman, R. J., Qualls, C. R. & Berg, L. M. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans. Biol Psychiatry 39, 784–795, https://doi.org/10.1016/0006-3223(95)00200-6 (1996).

  • Carbonaro, T. M., Johnson, M. W., Hurwitz, E. & Griffiths, R. R. Double-blind comparison of the two hallucinogens psilocybin and dextromethorphan: similarities and differences in subjective experiences. Psychopharmacology (Berl) 235, 521–534, https://doi.org/10.1007/s00213-017-4769-4 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Reissig, C. J. et al. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens. Psychopharmacology 223, 1–15, https://doi.org/10.1007/s00213-012-2680-6 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Holze, F. et al. Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology 45, 462–471, https://doi.org/10.1038/s41386-019-0569-3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tibbo, P. et al. A single photon emission computed tomography scan study of striatal dopamine D2 receptor binding with 123I-epidepride in patients with schizophrenia and controls. Journal of psychiatry & neuroscience: JPN 22, 39–45 (1997).

    CAS 

    Google Scholar
     

  • Gouzoulis-Mayfrank, E. et al. Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and d -methamphetamine in healthy volunteers. Psychopharmacology 142, 41–50, https://doi.org/10.1007/s002130050860 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Pokorny, T., Preller, K. H., Kraehenmann, R. & Vollenweider, F. X. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 26, 756–766, https://doi.org/10.1016/j.euroneuro.2016.01.005 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Heink, A., Katsikas, S. & Lange-Altman, T. Examination of the Phenomenology of the Ibogaine Treatment Experience: Role of Altered States of Consciousness and Psychedelic Experiences. J Psychoactive Drugs 49, 201–208, https://doi.org/10.1080/02791072.2017.1290855 (2017).

    Article 

    Google Scholar
     

  • Schmidt, T. T., Reiche, S., Hage, C. L. C., Bermpohl, F. & Majić, T. Acute and subacute psychoactive effects of Kambô, the secretion of the Amazonian Giant Maki Frog (Phyllomedusa bicolor): retrospective reports. Scientific reports 10, 21544, https://doi.org/10.1038/s41598-020-78527-4 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vollenweider, F. X., Vontobel, P., Oye, I., Hell, D. & Leenders, K. L. Effects of (S)-ketamine on striatal dopamine: a [C-11]raclopride PET study of a model psychosis in humans. Journal of Psychiatric Research 34, 35–43, https://doi.org/10.1016/S0022-3956(99)00031-X (2000).

    Article 
    CAS 

    Google Scholar
     

  • Curic, S. et al. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 44, 1239–1246, https://doi.org/10.1038/s41386-019-0328-5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Höflich, A. et al. Ketamine-Induced Modulation of the Thalamo-Cortical Network in Healthy Volunteers As a Model for Schizophrenia. Int J Neuropsychopharmacol 18, https://doi.org/10.1093/ijnp/pyv040 (2015).

  • Lehmann, M. et al. Effects of ketamine on brain function during metacognition of episodic memory. Neuroscience of consciousness 2021, niaa028, https://doi.org/10.1093/nc/niaa028 (2021).

    Article 

    Google Scholar
     

  • Mueller, F. et al. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. Neuroimage Clin 19, 745–757, https://doi.org/10.1016/j.nicl.2018.05.037 (2018).

  • Musso, F. et al. Ketamine effects on brain function — Simultaneous fMRI/EEG during a visual oddball task. NeuroImage 58, 508–525, https://doi.org/10.1016/j.neuroimage.2011.06.045 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Northoff, G. et al. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophrenia research 72, 235–248, https://doi.org/10.1016/j.schres.2004.04.009 (2005).

    Article 

    Google Scholar
     

  • Passie, T. et al. Effects of different subanaesthetic doses of (S)-ketamine on psychopathology and binocular depth inversion in man. J Psychopharmacol 17, 51–56, https://doi.org/10.1177/0269881103017001698 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Passie, T., Karst, M., Wiese, B., Emrich, H. M. & Schneider, U. Effects of different subanesthetic doses of (S)-ketamine on neuropsychology, psychopathology, and state of consciousness in man. Neuropsychobiology 51, 226–233, https://doi.org/10.1159/000085724 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Scheidegger, M. et al. Effects of ketamine on cognition-emotion interaction in the brain. Neuroimage 124, 8–15, https://doi.org/10.1016/j.neuroimage.2015.08.070 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Scheidegger, M. et al. Ketamine administration reduces amygdalo-hippocampal reactivity to emotional stimulation. Human brain mapping 37, 1941–1952, https://doi.org/10.1002/hbm.23148 (2016).

    Article 

    Google Scholar
     

  • Schmidt, A. et al. Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments. Neuropsychopharmacol 37, 865–875, https://doi.org/10.1038/npp.2011.261 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sprenger, T. et al. Imaging Pain Modulation by Subanesthetic S-(+)-Ketamine. Anesthesia & Analgesia 103, 729–737, https://doi.org/10.1213/01.ane.0000231635.14872.40 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Thiebes, S. et al. Alterations in interhemispheric gamma-band connectivity are related to the emergence of auditory verbal hallucinations in healthy subjects during NMDA-receptor blockade. Neuropsychopharmacology 43, 1608–1615, https://doi.org/10.1038/s41386-018-0014-z (2018).

  • Thiebes, S. et al. Glutamatergic deficit and schizophrenia-like negative symptoms: new evidence from ketamine-induced mismatch negativity alterations in healthy male humans. J Psychiatry Neurosci 42, 273–283, https://doi.org/10.1503/jpn.160187 (2017).

    Article 

    Google Scholar
     

  • Umbricht, D., Koller, R., Vollenweider, F. X. & Schmid, L. Mismatch negativity predicts psychotic experiences induced by nmda receptor antagonist in healthy volunteers. Biological Psychiatry 51, 400–406, https://doi.org/10.1016/S0006-3223(01)01242-2 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Curic, S. et al. Ketamine Alters Functional Gamma and Theta Resting-State Connectivity in Healthy Humans: Implications for Schizophrenia Treatment Targeting the Glutamate System. Frontiers in psychiatry 12, 671007, https://doi.org/10.3389/fpsyt.2021.671007 (2021).

    Article 

    Google Scholar
     

  • Vlisides, P. E. et al. Subanaesthetic ketamine and altered states of consciousness in humans. Br J Anaesth 121, 249–259, https://doi.org/10.1016/j.bja.2018.03.011 (2018).

  • Bowdle, T. A. et al. Psychedelic effects of ketamine in healthy volunteers: relationship to steady-state plasma concentrations. Anesthesiology 88, 82–88, https://doi.org/10.1097/00000542-199801000-00015 (1998).

  • Carter, L. P., Kleykamp, B. A., Griffiths, R. R. & Mintzer, M. Z. Cognitive effects of intramuscular ketamine and oral triazolam in healthy volunteers. Psychopharmacology (Berl) 226, 53–63, https://doi.org/10.1007/s00213-012-2883-x (2013).

  • Krupitsky, E. et al. Ketamine psychotherapy for heroin addiction: immediate effects and two-year follow-up. Journal of Substance Abuse Treatment 23, 273–283, https://doi.org/10.1016/S0740-5472(02)00275-1 (2002).

    Article 

    Google Scholar
     

  • Lofwall, M. R., Griffiths, R. R. & Mintzer, M. Z. Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults. Experimental and clinical psychopharmacology 14, 439–449, https://doi.org/10.1037/1064-1297.14.4.439 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Family, N. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology 237, 841–853, https://doi.org/10.1007/s00213-019-05417-7 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Holze, F. et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 46, 537–544, https://doi.org/10.1038/s41386-020-00883-6 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liechti, M. E., Dolder, P. C. & Schmid, Y. Alterations of consciousness and mystical-type experiences after acute LSD in humans. Psychopharmacology (Berl) 234, 1499–1510, https://doi.org/10.1007/s00213-016-4453-0 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Müller, F. et al. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand 136, 648–657, https://doi.org/10.1111/acps.12818 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schmid, Y., Gasser, P., Oehen, P. & Liechti, M. E. Acute subjective effects in LSD- and MDMA-assisted psychotherapy. Journal of psychopharmacology (Oxford, England) 35, 362–374, https://doi.org/10.1177/0269881120959604 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Grumann, C. et al. Pharmacokinetics and subjective effects of 1P-LSD in humans after oral and intravenous administration. Drug testing and analysis 12, 1144–1153, https://doi.org/10.1002/dta.2821 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bershad, A. K. et al. Preliminary Report on the Effects of a Low Dose of LSD on Resting-State Amygdala Functional Connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging 5, 461–467, https://doi.org/10.1016/j.bpsc.2019.12.007 (2020).

  • Carhart-Harris, R. L. et al. The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol Med 46, 1379–1390, https://doi.org/10.1017/S0033291715002901 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Carhart-Harris, R. L. et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci USA 113, 4853–4858, https://doi.org/10.1073/pnas.1518377113 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hutten, N. R. P. W. et al. Mood and cognition after administration of low LSD doses in healthy volunteers: A placebo controlled dose-effect finding study. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 41, 81–91, https://doi.org/10.1016/j.euroneuro.2020.10.002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kraehenmann, R. et al. LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation. Front Pharmacol 8, 814, https://doi.org/10.3389/fphar.2017.00814 (2017).

    Article 

    Google Scholar
     

  • Murray, C. H. et al. Low doses of LSD reduce broadband oscillatory power and modulate event-related potentials in healthy adults. Psychopharmacology (Berl), https://doi.org/10.1007/s00213-021-05991-9 (2021).

  • Preller, K. H. et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife 7, https://doi.org/10.7554/eLife.35082 (2018).

  • Preller, K. H. et al. Role of the 5-HT2A Receptor in Self- and Other-Initiated Social Interaction in Lysergic Acid Diethylamide-Induced States: A Pharmacological fMRI Study. J Neurosci 38, 3603–3611, https://doi.org/10.1523/JNEUROSCI.1939-17.2018 (2018).

  • Preller, K. H. et al. The Fabric of Meaning and Subjective Effects in LSD-Induced States Depend on Serotonin 2A Receptor Activation. Curr Biol 27, 451–457, https://doi.org/10.1016/j.cub.2016.12.030 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wießner, I. et al. LSD, madness and healing: Mystical experiences as possible link between psychosis model and therapy model. Psychological medicine 1–15, https://doi.org/10.1017/S0033291721002531 (2021).

  • Bershad, A. K., Schepers, S. T., Bremmer, M. P., Lee, R. & de Wit, H. Acute Subjective and Behavioral Effects of Microdoses of Lysergic Acid Diethylamide in Healthy Human Volunteers. Biological psychiatry 86, 792–800, https://doi.org/10.1016/j.biopsych.2019.05.019 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kimura, Y. et al. Measurement of psychological state changes at low dopamine transporter occupancy following a clinical dose of mazindol. Psychopharmacology (Berl) 234, 323–328, https://doi.org/10.1007/s00213-016-4464-x (2017).

    Article 
    CAS 

    Google Scholar
     

  • Baggott, M. J. et al. Investigating the Mechanisms of Hallucinogen-Induced Visions Using 3,4-Methylenedioxyamphetamine (MDA): A Randomized Controlled Trial in Humans. PLoS ONE 5, e14074, https://doi.org/10.1371/journal.pone.0014074 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baggott, M. J. et al. Effects of the Psychedelic Amphetamine MDA (3,4-Methylenedioxyamphetamine) in Healthy Volunteers. Journal of Psychoactive Drugs 51, 108–117, https://doi.org/10.1080/02791072.2019.1593560 (2019).

    Article 

    Google Scholar
     

  • Hermle, L., Spitzer, M., Borchardt, D., Kovar, K. A. & Gouzoulis, E. Psychological effects of MDE in normal subjects. Are entactogens a new class of psychoactive agents? Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 8, 171–176, https://doi.org/10.1038/npp.1993.19 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Dolder, P. C., Müller, F., Schmid, Y., Borgwardt, S. J. & Liechti, M. E. Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacology (Berl) 235, 467–479, https://doi.org/10.1007/s00213-017-4650-5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Frei, E. et al. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum. Brain Mapp. 14, 152–165, https://doi.org/10.1002/hbm.1049 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hasler, F., Studerus, E., Lindner, K., Ludewig, S. & Vollenweider, F. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA. J Psychopharmacol 23, 923–935, https://doi.org/10.1177/0269881108094650 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gamma, A. 3,4-Methylenedioxymethamphetamine (MDMA) Modulates Cortical and Limbic Brain Activity as Measured by [H215O]-PET in Healthy Humans. Neuropsychopharmacology 23, 388–395, https://doi.org/10.1016/S0893-133X(00)00130-5 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hysek, C. et al. Carvedilol inhibits the cardiostimulant and thermogenic effects of MDMA in humans. Br J Pharmacol 166, 2277–2288, https://doi.org/10.1111/j.1476-5381.2012.01936.x (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hysek, C. M. et al. The Norepinephrine Transporter Inhibitor Reboxetine Reduces Stimulant Effects of MDMA (“Ecstasy”) in Humans. Clin Pharmacol Ther 90, 246–255, https://doi.org/10.1038/clpt.2011.78 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hysek, C. M. et al. Duloxetine inhibits effects of MDMA (‘ecstasy’) in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 7, e36476, https://doi.org/10.1371/journal.pone.0036476 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hysek, C. M. et al. Effects of the α2-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of 3,4-methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 340, 286–294, https://doi.org/10.1124/jpet.111.188425 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hysek, C. M. et al. α1-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 33, 658–666, https://doi.org/10.1097/JCP.0b013e3182979d32 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hysek, C. M. et al. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. International Journal of Neuropsychopharmacology 17, 371–381, https://doi.org/10.1017/S1461145713001132 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liechti, M. E. & Vollenweider, F. X. Acute psychological and physiological effects of MDMA (‘Ecstasy’) after haloperidol pretreatment in healthy humans. Eur Neuropsychopharmacol 10, 289–295, https://doi.org/10.1016/S0924-977X(00)00086-9 (2000).

  • Liechti, M. E., Baumann, C., Gamma, A. & Vollenweider, F. X. Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 22, 513–521, https://doi.org/10.1016/S0893-133X(99)00148-7 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Liechti, M. Psychological and Physiological Effects of MDMA (“Ecstasy”) after Pretreatment with the 5-HT2 Antagonist Ketanserin in Healthy Humans. Neuropsychopharmacology 23, 396–404, https://doi.org/10.1016/S0893-133X(00)00126-3 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Liechti, M. E., Gamma, A. & Vollenweider, F. X. Gender differences in the subjective effects of MDMA. Psychopharmacology 154, 161–168, https://doi.org/10.1007/s002130000648 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Schmid, Y. et al. Differential effects of MDMA and methylphenidate on social cognition. J Psychopharmacol 28, 847–856, https://doi.org/10.1177/0269881114542454 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vollenweider, F. X., Liechti, M. E. & Paulus, M. P. MDMA affects both error-rate dependent and independent aspects of decision-making in a two-choice prediction task. J Psychopharmacol 19, 366–374, https://doi.org/10.1177/0269881105053287 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bouso, J. C., Doblin, R., Farré, M., Alcázar, M. Á. & Gómez-Jarabo, G. MDMA-Assisted Psychotherapy Using Low Doses in a Small Sample of Women with Chronic Posttraumatic Stress Disorder. Journal of Psychoactive Drugs 40, 225–236, https://doi.org/10.1080/02791072.2008.10400637 (2008).

    Article 

    Google Scholar
     

  • Hermle, L. et al. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biological psychiatry 32, 976–991, https://doi.org/10.1016/0006-3223(92)90059-9 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Bravermanová, A. et al. Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing-study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology (Berl) 235, 491–503, https://doi.org/10.1007/s00213-017-4807-2 (2018).

    Article 

    Google Scholar
     

  • Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 187, 268–283, https://doi.org/10.1007/s00213-006-0457-5 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, R. R. et al. Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology (Berl) 218, 649–665, https://doi.org/10.1007/s00213-011-2358-5 (2011).

  • Schmidt, A., Kometer, M., Bachmann, R., Seifritz, E. & Vollenweider, F. The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions. Psychopharmacology 225, 227–239, https://doi.org/10.1007/s00213-012-2811-0 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bogenschutz, M. P. et al. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol 29, 289–299, https://doi.org/10.1177/0269881114565144 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Carhart-Harris, R. L. et al. The administration of psilocybin to healthy, hallucinogen-experienced volunteers in a mock-functional magnetic resonance imaging environment: a preliminary investigation of tolerability. J Psychopharmacol 25, 1562–1567, https://doi.org/10.1177/0269881110367445 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Carter, O. L. et al. Modulating the Rate and Rhythmicity of Perceptual Rivalry Alternations with the Mixed 5-HT2A and 5-HT1A Agonist Psilocybin. Neuropsychopharmacol 30, 1154–1162, https://doi.org/10.1038/sj.npp.1300621 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol 30, 1181–1197, https://doi.org/10.1177/0269881116675513 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, R. R. et al. Psilocybin-occasioned mystical-type experience in combination with meditation and other spiritual practices produces enduring positive changes in psychological functioning and in trait measures of prosocial attitudes and behaviors. J Psychopharmacol 32, 49–69, https://doi.org/10.1177/0269881117731279 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Grob, C. S. et al. Pilot Study of Psilocybin Treatment for Anxiety in Patients With Advanced-Stage Cancer. Arch Gen Psychiatry 68, 71, https://doi.org/10.1001/archgenpsychiatry.2010.116 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hasler, F., Grimberg, U., Benz, M. A., Huber, T. & Vollenweider, F. X. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology 172, 145–156, https://doi.org/10.1007/s00213-003-1640-6 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Quednow, B. B., Kometer, M., Geyer, M. A. & Vollenweider, F. X. Psilocybin-Induced Deficits in Automatic and Controlled Inhibition are Attenuated by Ketanserin in Healthy Human Volunteers. Neuropsychopharmacol 37, 630–640, https://doi.org/10.1038/npp.2011.228 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Smigielski, L. et al. Characterization and prediction of acute and sustained response to psychedelic psilocybin in a mindfulness group retreat. Sci Rep 9, 14914, https://doi.org/10.1038/s41598-019-50612-3 (2019).

  • Smigielski, L., Scheidegger, M., Kometer, M. & Vollenweider, F. X. Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage 196, 207–215, https://doi.org/10.1016/j.neuroimage.2019.04.009 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vollenweider, F. X., Csomor, P. A., Knappe, B., Geyer, M. A. & Quednow, B. B. The Effects of the Preferential 5-HT2A Agonist Psilocybin on Prepulse Inhibition of Startle in Healthy Human Volunteers Depend on Interstimulus Interval. Neuropsychopharmacol 32, 1876–1887, https://doi.org/10.1038/sj.npp.1301324 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wittmann, M. et al. Effects of psilocybin on time perception and temporal control of behaviour in humans. J Psychopharmacol 21, 50–64, https://doi.org/10.1177/0269881106065859 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Carter, O. L. et al. Using Psilocybin to Investigate the Relationship between Attention, Working Memory, and the Serotonin 1A and 2A Receptors. Journal of Cognitive Neuroscience 17, 1497–1508, https://doi.org/10.1162/089892905774597191 (2005).

    Article 

    Google Scholar
     

  • Carter, O. L. et al. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology 195, 415–424, https://doi.org/10.1007/s00213-007-0930-9 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bernasconi, F. et al. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cereb Cortex 24, 3221–3231, https://doi.org/10.1093/cercor/bht178 (2014).

    Article 

    Google Scholar
     

  • Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology 235, 399–408, https://doi.org/10.1007/s00213-017-4771-x (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kometer, M. et al. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry 72, 898–906, https://doi.org/10.1016/j.biopsych.2012.04.005 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, C. R., Preller, K. H., Braden, B. B., Riecken, C. & Vollenweider, F. X. Rostral Anterior Cingulate Thickness Predicts the Emotional Psilocybin Experience. Biomedicines 8, https://doi.org/10.3390/biomedicines8020034 (2020).

  • Lewis, C. R. et al. Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow. NeuroImage 159, 70–78, https://doi.org/10.1016/j.neuroimage.2017.07.020 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334, https://doi.org/10.1038/s41386-019-0324-9 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Madsen, M. K. et al. A single psilocybin dose is associated with long-term increased mindfulness, preceded by a proportional change in neocortical 5-HT2A receptor binding. Eur Neuropsychopharmacol 33, 71–80, https://doi.org/10.1016/j.euroneuro.2020.02.001 (2020).

  • Madsen, M. K. et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 50, 121–132, https://doi.org/10.1016/j.euroneuro.2021.06.001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Preller, K. H. et al. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc Natl Acad Sci USA 113, 5119–5124, https://doi.org/10.1073/pnas.1524187113 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pokorny, T., Preller, K. H., Kometer, M., Dziobek, I. & Vollenweider, F. X. Effect of Psilocybin on Empathy and Moral Decision-Making. Int J Neuropsychopharmacol 20, 747–757, https://doi.org/10.1093/ijnp/pyx047 (2017).

    Article 

    Google Scholar
     

  • Moreno, F. A. safety tolerability and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry, https://doi.org/10.4088/jcp.v67n1110 (2006).

  • Olson, J. A., Suissa-Rocheleau, L., Lifshitz, M., Raz, A. & Veissière, S. P. L. Tripping on nothing: placebo psychedelics and contextual factors. Psychopharmacology (Berl) 237, 1371–1382, https://doi.org/10.1007/s00213-020-05464-5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smigielski, L. et al. P300-mediated modulations in self-other processing under psychedelic psilocybin are related to connectedness and changed meaning: A window into the self-other overlap. Hum Brain Mapp 41, 4982–4996, https://doi.org/10.1002/hbm.25174 (2020).

    Article 

    Google Scholar
     

  • Nicholas, C. R. et al. High dose psilocybin is associated with positive subjective effects in healthy volunteers. J Psychopharmacol 32, 770–778, https://doi.org/10.1177/0269881118780713 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. Journal of Psychopharmacology 30, 1165–1180, https://doi.org/10.1177/0269881116675512 (2016).

    Article 
    CAS 

    Google Scholar
     

  • González, D., Riba, J., Bouso, J. C., Gómez-Jarabo, G. & Barbanoj, M. J. Pattern of use and subjective effects of Salvia divinorum among recreational users. Drug and alcohol dependence 85, 157–162, https://doi.org/10.1016/j.drugalcdep.2006.04.001 (2006).

    Article 

    Google Scholar
     

  • MacLean, K. A., Johnson, M. W., Reissig, C. J., Prisinzano, T. E. & Griffiths, R. R. Dose-related effects of salvinorin A in humans: dissociative, hallucinogenic, and memory effects. Psychopharmacology (Berl) 226, 381–392, https://doi.org/10.1007/s00213-012-2912-9 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maqueda, A. E. et al. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans. Int J Neuropsychopharmacol 18, pyv065, https://doi.org/10.1093/ijnp/pyv065 (2015).

  • Maqueda, A. E. et al. Naltrexone but not ketanserin antagonizes the subjective, cardiovascular and neuroendocrine effects of salvinorin-A in humans. International Journal of Neuropsychopharmacology 19, 1–13, https://doi.org/10.1093/ijnp/pyw016 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Addy, P. H. Acute and post-acute behavioral and psychological effects of salvinorin A in humans. Psychopharmacology 220, 195–204, https://doi.org/10.1007/s00213-011-2470-6 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Albertson, D. N. & Grubbs, L. E. Subjective Effects of Salvia Divinorum: LSD- or Marijuana-like? Journal of Psychoactive Drugs 41, 213–217, https://doi.org/10.1080/02791072.2009.10400531 (2009).

    Article 

    Google Scholar
     

  • Johnson, M. W., MacLean, K. A., Reissig, C. J., Prisinzano, T. E. & Griffiths, R. R. Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum. Drug and Alcohol Dependence 115, 150–155, https://doi.org/10.1016/j.drugalcdep.2010.11.005 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Karam, A. et al. Abuse and Effects of Salvia divinorum in a Sample of Patients Hospitalized for Substance Dependence. Community Ment Health J 55, 702–708, https://doi.org/10.1007/s10597-018-0347-4 (2019).

    Article 

    Google Scholar
     

  • Ona, G. et al. The Kappa Opioid Receptor and the Sleep of Reason: Cortico-Subcortical Imbalance Following Salvinorin-A. Int J Neuropsychopharmacol 25, 54–63, https://doi.org/10.1093/ijnp/pyab063 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ranganathan, M. et al. Dose-Related Behavioral, Subjective, Endocrine, and Psychophysiological Effects of the κ Opioid Agonist Salvinorin A in Humans. Biological Psychiatry 72, 871–879, https://doi.org/10.1016/j.biopsych.2012.06.012 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zaytseva, Y. et al. Cannabis-induced altered states of consciousness are associated with specific dynamic brain connectivity states. Journal of psychopharmacology (Oxford, England) 33, 811–821, https://doi.org/10.1177/0269881119849814 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Perry, G., Polito, V. & Thompson, W. F. Rhythmic Chanting and Mystical States across Traditions. Brain Sciences 11, 101, https://doi.org/10.3390/brainsci11010101 (2021).

    Article 

    Google Scholar
     

  • Huels, E. R. et al. Neural Correlates of the Shamanic State of Consciousness. Frontiers in Human Neuroscience 15, 610466, https://doi.org/10.3389/fnhum.2021.610466 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maurer, R. L. S., Kumar, V. K., Woodside, L. & Pekala, R. J. Phenomenological experience in response to monotonous drumming and hypnotizability. The American journal of clinical hypnosis 40, 130–145, https://doi.org/10.1080/00029157.1997.10403417 (1997).

    Article 

    Google Scholar
     

  • Bartossek, M. T., Kemmerer, J. & Schmidt, T. T. Altered states phenomena induced by visual flicker light stimulation. PloS one 16, e0253779, https://doi.org/10.1371/journal.pone.0253779 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, T. T., Jagannathan, N., Ljubljanac, M., Xavier, A. & Nierhaus, T. The multimodal Ganzfeld-induced altered state of consciousness induces decreased thalamo-cortical coupling. Sci Rep 10, 18686, https://doi.org/10.1038/s41598-020-75019-3 (2020).

  • Schmidt, T. T. & Prein, J. C. The Ganzfeld experience-A stably inducible altered state of consciousness: Effects of different auditory homogenizations. Psych J 8, 66–81, https://doi.org/10.1002/pchj.262 (2019).

    Article 

    Google Scholar
     

  • Kübel, S. L., Fiedler, H. & Wittmann, M. Red visual stimulation in the Ganzfeld leads to a relative overestimation of duration compared to green. PsyCh journal 10, 5–19, https://doi.org/10.1002/pchj.395 (2021).

    Article 

    Google Scholar
     

  • Facco, E. et al. The Neurophenomenology of Out-of-Body Experiences Induced by Hypnotic Suggestions. International Journal of Clinical and Experimental Hypnosis 67, 39–68, https://doi.org/10.1080/00207144.2019.1553762 (2019).

    Article 

    Google Scholar
     

  • Kasos, E., Kasos, K., Kolto, A., Józsa, E. & Varga, K. Phenomenological Experiences during Active-Alert Hypnosis: Comparison of Hypnotist and Subject. The International journal of clinical and experimental hypnosis 68, 451–465, https://doi.org/10.1080/00207144.2020.1802733 (2020).

    Article 

    Google Scholar
     

  • Pekala, R. J. et al. Positive affect, negative affect, and negative effects during a phenomenological hypnotic assessment within a substance abuse population. Int J Clin Exp Hypn 57, 64–93, https://doi.org/10.1080/00207140802463674 (2009).

  • Pekala, R. J. Operationalizing trance II: clinical application using a psychophenomenological approach. The American journal of clinical hypnosis 44, 241–255, https://doi.org/10.1080/00029157.2002.10403484 (2002).

    Article 

    Google Scholar
     

  • Pekala, R. J. & Forbes, E. J. Types of hypnotically (un)susceptible individuals as a function of phenomenological experience: towards a typology of hypnotic types. The American journal of clinical hypnosis 39, 212–224, https://doi.org/10.1080/00029157.1997.10403386 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Pekala, R. J. & Kumar, V. K. Predicting hypnotic susceptibility via a self-report instrument: a replication. The American journal of clinical hypnosis 30, 57–65, https://doi.org/10.1080/00029157.1987.10402723 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Pekala, R. J. et al. Hypnotism as a Function of Trance State Effects, Expectancy, and Suggestibility: An Italian Replication. The International journal of clinical and experimental hypnosis 65, 210–240, https://doi.org/10.1080/00207144.2017.1276365 (2017).

    Article 

    Google Scholar
     

  • Varga, K., Kekecs, Z., Myhre, P. S. & Józsa, E. A Neutral Control Condition for Hypnosis Experiments: ‘Wiki’ Text. The International journal of clinical and experimental hypnosis 65, 429–451, https://doi.org/10.1080/00207144.2017.1348833 (2017).

    Article 

    Google Scholar
     

  • Venkatesh, S., Raju, T. R., Shivani, Y., Tompkins, G. & Meti, B. L. A study of structure of phenomenology of consciousness in meditative and non-meditative states. Indian journal of physiology and pharmacology 41, 149–153 (1997).

    CAS 

    Google Scholar
     

  • Walach, H. & Käseberg, E. Mind machines: a controlled study on the effects of electromagnetic and optic-acoustic stimulation on general well-being, electrodermal activity, and exceptional psychological experiences. Behav Med 24, 107–114, https://doi.org/10.1080/08964289809596388 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Piarulli, A. et al. Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans. Scientific reports 8, 6581, https://doi.org/10.1038/s41598-018-24924-9 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polito, V., Langdon, R. & Brown, J. The experience of altered states of consciousness in shamanic ritual: The role of pre-existing beliefs and affective factors. Consciousness and Cognition 19, 918–925, https://doi.org/10.1016/j.concog.2010.05.013 (2010).

    Article 

    Google Scholar
     

  • Johnson, M. A Randomized Study of a Novel Zen Dialogue Method for Producing Spiritual and Well-Being Enhancement: Implications for End-of-Life Care. J Holist Nurs 29, 201–210, https://doi.org/10.1177/0898010110391265 (2011).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.